From The Deck Of The SS Northing & Easting

Earlier this morning I let the dogs out to do their business and stepped out onto my deck to have a look around.  Although it was a bit cloudy out I noticed that the Moon was hanging brightly about 8 degrees above my roof line.  Dawn was just starting to break and I figured it would be a good time for this pseudo-mariner to get some practice sights in with the sextant.  The moon is entering its last quarter here in Georgia and there was still enough of the orb available for a good upper or lower limb shot.

I grabbed my old Astra IIIB sextant, screwed on the artificial bubble horizon and spent about 10 minutes practicing ‘pulling down the sight’, focusing more on technique than accuracy.  With a bubble horizon you have a lot of room for error because the horizon indicator (the bubble) is so large when viewed through the sight tube.  Don’t worry – around 0720 EST the Moon was hanging at about 40 degrees 4.8 minutes, right where it should be.  The clockwork heavens are still ticking along just fine.

Astra IIIB Sextant

As I was fiddling with the sextant the winds started pushing the low clouds around and the Moon began darting in and out of view, sometimes partially obscured, sometimes fully obscured.  This made for an interesting practice session as I was forced to time the approach and departure of the heavier cloud patches and practice pulling down the sight quickly before the Moon became too indistinct for a good shot.   This is a common problem in celestial navigation – the navigator is at the mercy of the weather.  That’s why so much emphasis was placed on grabbing a celestial shot whenever the heavens and the weather cooperated.  It is also why so much emphasis was placed on accurate dead reckoning – estimating your current location based on distance and direction traveled from your last known location.  Since you were never sure when you’d be able to get your next celestial fix an accurate running estimate of your position was absolutely crucial.

I was reminded of the particular problem celestial navigation posed for our submarine crews in WWII.  More than any other arm of the Navy, the Submarine Service operated far into enemy waters in search of victims, and they traveled alone.  Accurate navigation was absolutely essential and the navigators assigned to our submarines were some of the best the Navy produced.

WWII submarines were extremely vulnerable when caught in the wrong combination of circumstances.  Our subs like the Gato-class boats were really highly modified surface ships that could spend limited amounts of time under water on battery power.

US Gato-class submarine

The lower spaces of these subs were filled with giant lead acid batteries that allowed the boat to remain submerged for up to 48 hours and maneuver slowly (9 knots).  Eventually, however, the sub had to surface to charge her batteries, refill her air tanks and get a navigational fix.  For a boat operating alone in enemy waters this was a hazardous activity.  A submarine was never more vulnerable than when on the surface with low batteries.  It was common practice for the subs to surface in the dark of night and make a high speed dash to a new hunting area while replenishing her batteries.  The problem is that the middle of the night is generally a lousy time for a celestial fix.  Sure, the skies are filled with stars and planets, but the horizon is difficult to distinguish.  The best time for a fix is at nautical twilight, when the sun is 6 – 12 degrees below the horizon.  At this time the nautical horizon is still distinct and key navigational stars and planets are visible in the darkening sky.  But there’s also enough light left to be spotted by an enemy aircraft or nearby surface ship.

This led to a unique ‘navigator’s dance’ on American submarines.  At twilight the Captain would bring the boat to periscope depth to check for enemy ships and aircraft and to check weather conditions.  If the skies were clear of enemy and clouds he’d give the heads up to the navigator, who was usually the boat’s executive officer.  The navigator would have already checked his navigational tables and picked one or more likely celestial objects to try to use for a fix.  This could be a planet or bright star or, if he was really lucky the Moon was already up and far enough above the horizon to provide a good fix.  The navigator would often wear goggles with red lenses to get his eyes adapted to dark conditions.

The Captain would give the command to surface the boat and once the conning tower was clear of the water the hatch would be opened and the watch personnel would scramble up with binoculars, climb the periscope shears and scan the skies and the horizon for any signs of the enemy.  Once the all-clear was given the navigator would come up with the sextant hanging from his neck by a lanyard.  He would take a series of quick shots on the available celestial bodies and call the sextant readings down to the navigation team in the control room.  The navigation team would note the time of the observations against the boat’s chronometers and begin the process of using the sight readings to establish a line of position.  A quick shot on Polaris gave the navigator an accurate and easily determined latitude, but the shots on the stars and planets to determine longitude took a bit more number crunching.  Things like the height of the navigator above the surface of the water, the time difference from GMT, the uncorrected error built into the sextant and other factors all had to be calculated.  This process was called ‘sight reduction’.  It was (and still is) straight forward but somewhat tedious math.

In the end the navigation team (usually consisting of the executive officer, an enlisted navigator known as a quartermaster and another pair of trained eyes, often those of the Captain) would come up with intersecting lines of position, one for latitude and one for longitude, that provided the boat’s true position at the time the sights were taken.

Here’s an interesting description of the process taken from the book The Underwater War 1939 – 1945 by Richard Compton-Hall:

Away from land every opportunity for taking sun, moon, planet and star sights had to be snatched. Sight-taking with a sextant was treated as an evolution; if surfacing primarily for that purpose it was combined when possible with ditching (trash) — which made matters no easier for the navigator competing in the conning tower and on the crowded bridge with a hustling (trash) party, the lookouts and the sea itself. The smallest drop of water on the sextant mirror made sight-taking impossible and the instrument had to be wrapped tenderly in a towel when not actually bringing the observed body down on to the lurching, irregular horizon which, with so low a height-of-eye, made the task doubly difficult. The ‘exec’ was primarily responsible for navigation in American boats (assisted by excellent quartermasters) but German commanders relied upon the equivalent of a specially trained warrant officer to take sights. Most British captains thought sight-taking far too important to entrust to Vasco (the navigator) and did the sextant work themselves; but they were quite happy to delegate the long and boring working-out of the sights when they were taken! It could easily take an hour to plod through the spherical trigonometry (which actually amounted to no more than straight forward arithmetic) before arriving at a solution which almost invariably produced a large cocked hat; this led to thinly veiled hints from Vasco to the effect that the captain was incapable of reading sextant angles, and to more direct accusations from the captain that the navigator was incapable of simple addition and subtraction. Some boats carried rapid reduction tables derived from air navigation manuals which greatly shortened the time required to produce a fix: but the Royal Navy and most other services clung doggedly to Inman’s Nautical Tables with their long columns of five-figure logarithms.

Today we are spoiled.  Want to know where you are on the face of the earth to within a few hundred feet?  Just turn on your smartphone or GPS receiver.  Within seconds you’ll get a position fix that is far more accurate than any experienced navigator could have calculated using celestial navigation.

Yet I believe it is important we continue to practice the old techniques.  First, it is great mental exercise.  To be a good celestial navigator you need to be at least proficient in basic astronomy and mathematics.  You need to know how to evaluate and calculate error.  You need to be a good problem solver.  Celestial navigation is like golf – it takes just a few months to learn but a lifetime to master.  It sure beats playing another round of World of Warcraft.

Next, celestial navigation gives one a greater appreciation for the technology we have available today, and that appreciation and the resulting awareness of the GPS system’s capabilities and limitations will make you a better navigator overall.

And last, the celestial navigation techniques and tools we use today are exactly the same as those used by history’s great explorers and navigators – Capt. James Cook, Lewis and Clark, Robert Peary, Roald Amundsen, Earnest Shackleton, Robert Scott, Capt. William Bligh (yes that Capt. Bligh) and many others. Anyone interested in the history of exploration can make a direct and relevant connection to their heroes and better appreciate their achievements by dabbling in celestial navigation.

So that’s today’s report from the deck of the SS Northing & Easting.  I’ll keep the spyglass and blunderbuss handy in case the pirates try to board.


The Wilderness Route Finder

I grew up reading – devouring, really – the works of two great outdoor writers.  One was Brad Angier and the other was Calvin Rutstrum.  These two adventurers had been living the ‘back to nature’ lifestyle long before the backpacking craze hit America in the 1960s.  Both were prolific writers, turning out books and papers that extolled the wilderness lifestyle.  Angier’s works were more philosophic – he fancied himself a modern day Thoreau and his books reflected that outlook.  Rutstrum, on the other hand, didn’t just live the wilderness lifestyle, he actually worked in and made a living from the wilderness, primarily through guiding.  Rutstrum’s advice was always more down to earth, more practical.

Some of Rutstrum’s advice would cause modern day enviroweenies to fall over in a dead faint. For example, to deal with the biting insects that invariably got into your tent when camping in the north country Rutstrum recommended just tossing a DDT ‘bomb’ (spray canister) into the tent, zipping it up and letting the insecticide do its job.  Go off and do your chores and when you come back you’ll have a bug-free tent to sleep peacefully in.  Keep in mind, however, that Rustrum’s books were written from the late 1940s through the 1970s, so some procedures and ‘best practices’ are now out-dated and in many cases downright illegal.  Regardless, his books like ‘New Way of the Wilderness’ and ‘Paradise Below Zero’ are still considered classics of outdoor literature.

Another gem that Rutstrum wrote is ‘The Wilderness Route Finder’.

My copy, purchased in the late1970s and well

I first came across this book over 30 years ago and read it cover to cover multiple times.  I believe it is the first broad application land navigation work written for the general public.  (The Army land navigation field manual, FM 21-26, pre-dates this work by several decades.  While an excellent work is targeted at military users.)  Rutstrum approached land navigation the way he approached so many things related to the outdoors – use what works.  He presents a broad range of techniques and discusses use of a number of pieces of equipment  that can assist in navigating the high latitudes where the magnetic compass becomes unreliable due to declination issues and local magnetism.

Obviously this book was written before GPS was even a gleam in the eye of senior military commanders, and many of the pieces of equipment Rutstrum discusses are out dated or simply not available anymore.  For example, cruiser compasses have not been made for decades and have now entered the status of collector’s item.  However, some of the techniques he discusses, while at first glance seemingly archaic in the world of cell phones, wireless internet and GPS, are still valid and those serious about land navigation ought to give them a try.  For example, the concept of using a marine sextant to determine latitude is quite valid, and quality used sextants are available today for less than $400.  Equip one with a bubble horizon and bring along a quality quartz watch and you could even do reasonably accurate longitude determination.  Think of it as an exercise in confidence building.

The reader should be aware that Rutstrum wrote this book specifically for those navigating in the far north regions of the US and Canada.   There is little in this book about desert or tropical environments.  Rutstrum was also a man of his time and wrote like it.  Many of the explanations are a little wordy and personal pronouns are few and far between.  Keeping in mind these shortcomings, the book is still an undisputed classic and belongs on the shelf of anyone serious about learning land navigation.

– Brian