The 2014 ESRI UC

Well kiddies, I’m back from San Diego and the 2014 ESRI International User Conference. This is my third conference in five years, and it’s starting to feel like Groundhog Day.

Now please, do not get me wrong – it was a very good conference and in some respects it was a great conference. I and my team learned a lot and picked up a lot of new information.  But in the plenary and in the technical sessions and presentations side it was the same drumbeat we’ve been hearing for the past several years – ‘rich’ web maps and apps (could someone in ESRI please tell me just what ‘rich’ means?), ArcGIS as an integrated system, not just a bunch of parts, ArcGIS Online, ArcGIS Online, ArcGIS Online, yaddah, yaddah, yaddah.  In the Solutions Expo (i.e., vendor displays) it was the same vendors, many in the same locations, showing the same stuff, giving the same spiel, etc.

You know, Groundhog Day. C’mon ESRI, mix it up a bit. It’s getting a little stale.

OK, that’s out of the way.  Let’s change tack. If you listened closely to the presentations and have been paying attention to what ESRI’s been doing in the past few months you were able to tease out some great information regarding new and emerging capabilities. Let’s start with one of ESRI’s current flagship product, ArcGIS Online.

If anyone reading this blog still doubts that ESRI considers ArcGIS Online and web mapping a central part of ESRI’s GIS universe then this UC would have set you straight. The message was obvious and unmistakable, like a croquet mallet to the head. ArcGIS Online is here to stay, is only going to get bigger, and if you are going to play in the ESRI sandbox you need to know (and buy into) ArcGIS Online. I didn’t attend a single ESRI session, whether it was the plenary or a one-on-one discussion with a product expert where the topic of ArcGIS Online integration didn’t pop up early and often. Most vendors I talked to – and certainly all of those that ‘got it’ – had ArcGIS Online integration as a key selling point for their product or service. Heck, even IBM with their painfully complex work order management program called Maximo ‘got it’ and touted how I could now ‘easily and seamlessly’ integrate ArcGIS Online feature services with Maximo. Anybody who knows Maximo knows it doesn’t do anything ‘easily and seamlessly’. I don’t really think Maximo can use hosted feature services from ArcGIS Online, at least not yet. The REST endpoints I saw Maximo consuming looked like dynamic map services. But at least the IBM sales team took the time to read the memo from Redlands.

ArcGIS Online

The ArcGIS Online product space was the single biggest product presence ESRI had set up in the Expo. It was huge, and a reflection of the importance ESRI places on the product

ESRI’s incessant chatter about ArcGIS Online would have fallen flat with those who are long time users of the product if ESRI had not done a product update just a few weeks ago. The July update of ArcGIS Online included a number of significant improvements and new features that signaled to those who know the product that ESRI is serious about ArcGIS Online being more than just a toy for making simple web maps. The upgrades in system security certification, administration tools, data management, data integration, analysis and cartographic tools shows ESRI has full confidence in ArcGIS Online as a serious enterprise tool.  I’ll admit that a few years ago I was having doubts that ESRI would be able to pull this off. Today I’m convinced that ArcGIS Online and web mapping is the most significant development in geographic content delivery since the invention of the printing press.

This year I spent more time wandering the Solutions Expo hall than I did attending the technical sessions. In past years there were sessions I felt I just couldn’t miss, but this year my technical needs were somewhat less well defined and I wanted to spend more time speaking with the vendors and visiting the ESRI product islands. It was time well spent.

One of the focuses (foci?) of this year’s plenary presentation was the issue of ‘open data’. Open data is nothing more than data that is available free to any user. Open data can take any format (though it is understood that for data to be truly ‘open’ it needs to be available in a non-proprietary format). For decades the federal and state governments have made GIS data available in a variety of GIS formats. A good example of this is census data. The data for most censuses held in the last 40 years or so is freely available in GIS format from the US government. It’s easy to pull that data into a GIS system and do all kinds of analysis against it. In fact, census data is one of the first data types that new GIS students learn to analyze in their core classes. In the same vein, many states make state-specific GIS data available from freely accessible data servers. Things like elevation data, transportation network data, hydrology, landcover and more have been commonly available for years.

However, it was often difficult for smaller government entities – cities, counties, or regional authorities – to share out their public data because of the IT and GIS management overhead involved. Let’s face it, nobody makes money sharing out free data so there’s little incentive to put a lot of resources behind the effort. As a result a lot of currently available open GIS data is pretty stale. ESRI is backing a push to pump new vitality into the sharing of open data via the new Open Data tools embedded in ArcGIS Online (see, there it is again). OK, I admit that ArcGIS Online isn’t exactly free to the organization looking to share out data, but if you do happen to be an ArcGIS Online subscriber then setting up an Open Data site is fast and easy. One of the great concepts behind ESRI’s effort is that the organization is really sharing a feature service from which an Open Data user can extract the data. This means that the data should not suffer from ‘shelf life’ issues; as long as the data behind the feature service is regularly updated the Open Data user will have the latest and greatest representation of what’s being shared.

On one of my laps around the Expo floor I stopped at the Open Data demonstration kisoks set up in the ArcGIS Online area and talked through the concept and implementation with one of the ESRI technical reps. At first I didn’t think my organization would have much use for this feature, but after thinking about they types of data we routinely pass out to anyone that asks – road centerlines, jurisdictional boundaries, parcels, etc. – I began to think this might be of some value to us. In about 15 minutes she helped me set up my organization’s Open Data site and share some common use data out to the public. If for no other purpose, an Open Data site could lift some of the data distribution burden off of us.


The new Open Data tab in ArcGIS Online allows the administrator to configure an open data page from which the organization can share data with the public

Another lap took me to the US Geological Survey information tables. The USGS table was set up in the Federal Government area and while most of the agencies suffered from a serious lack of attendee interest (and I pity the poor souls who had to man the Veteran’s Administration table), the USGS tables were doing a good business. The USGS reps were stirring the pot a bit. It seems that there’s a move afoot in the USGS to do away with the National Atlas. I’m not sure yet how I feel about this move. Clearly elimination of the National Atlas is a cost cutting move (and the USGS makes no bones about it on their website), but if the same digital data can be made available via other portals, like the National Map portal, then this may all be a moot point.  Still, this is the National Atlas and as such should be a point of pride not just for the USGS but for the nation. If for no other reason than that I’d keep it alive. The USGS reps working the tables were clearly pro-National Atlas and were running a petition campaign to garner support to keep the program going.

I also spent some time discussing the new US Topo series of maps with the USGS reps. If you’ve read any of my posts on the US Topo maps you know that from a cartographic perspective I think they stink. The map base – imagery – is poorly selected and processed and the maps looks like crap when printed out. That’s the basic problem; the US Topo series are compiled as though the intent is to print them out full scale for use in the field. They carry full legends and marginal data. However, it’s clear they were compiled specifically to look best on a back-lit computer screen. When printed out the maps are dark, muddy and the image data is difficult to discern. When I brought this up to one of the USGS reps she turned her badge around to indicate she was speaking for herself and said, “I agree completely, and we get a lot of complaints about the visual and cartographic quality of these maps.” Here’s hoping the USGS doesn’t go tone-deaf on this issue and takes steps to improve the quality of the US Topo series. She also let me know that there’s growing support within the USGS to provide the US Topo series maps not just in GeoPDF format but also in GeoTIFF. This would be a great move, especially if the USGS provided them in a collarless format for use in systems like ArcGIS for Desktop.

I took the time to mosey over to the Trimble display area and talk to a rep about my favorite Trimble issue – the lack of a Google certified version of Android on their very capable (and very expensive) Juno 5-series of handheld data collectors. I’ve bugged Trimble so much about this that I have to assume my picture is hanging on a dartboard in the executive conference room at Trimble’s headquarters. I got the same response out of the Trimble rep that I’ve been getting for about a year now, “We hear it’s coming but we don’t know when”. Yeah right.

After I left the Trimble area I found myself a few rows over at the table of a company I’d never heard of before, Cedar Tree Technologies. It was just a couple of guys with a couple of pieces of hardware, but my eye caught something that looked a lot like a beefed up smartphone and the guys at the booth were eager to give me their story. It seems that Cedar Tree Technologies is a brand new spin-off of Juniper Systems, a company that’s been making rugged handheld systems for the surveying and GIS community since the 1990’s. Cedar Tree’s specific focus is on the Android OS, and each of the devices on display were running Google certified versions of Android 4.2. The device that caught my eye was the CT4. The CT4 is what it looked like – a ruggedized smartphone that runs on Android. It looked like an OK product with very good specs – a quad core processor running at 1.2 GHz, a 4.3″ Gorilla Glass display, and 8 mp camera, a 3000 mAh battery, Bluetooth and an IP68 rating.  It did have a few drawbacks – only 16 gig of system memory and a 3G (not 4G or LTE) cell radio, and I forgot to ask if it was fully GNSS capable. But here’s the kicker – this damned thing is only $489! Roughly one third the price of the baseline Juno 5, yet it looks like it offers 3/4 or more more of the Juno’s capability. You can bet I’ll be contacting Cedar Tree about borrowing one of these for an evaluation.

Cedar Tree1

 He’s smiling because he thinks he’s got Trimble beat in the Android space. I think he might be right!


Cedar Tree2

 The Cedar Tree Technologies CT4. Perhaps the first truly usable Android-based field data collector

OK, I don’t want to get too far into the weeds on other topics of interest, so let me just do some quick summaries:

  • I talked to Trimble, Leica, Carlson, Juniper and Topcon reps about their software offerings. All plan to remain tightly wedded to the Windows Mobile 6.5 OS (a.k.a., Windows Embedded Handheld), which hasn’t had any significant updates for over 2 years. Many of the reps indicated that the mobile version of Windows 8 still has some issues and they are very reluctant to move in that direction. So it looks like the industry will be stuck with an archaic and moribund OS for some time yet
  • What the world needs, in addition to a good 5¢ cigar, is a good spatially based document management system. Lord knows my organization is in desperate need of something like this. I saw only one document management system vendor at the show, and their system has a strong dependency on ArcGIS Online (there it is again). I think this is a market area that is ripe for exploitation. The tools are now in place with ArcGIS Online and reliable cloud services to bring this type of functionality quickly and cheaply to an enterprise and I’d love to see some new developments in this area. Pleeeeze!
  • I attended a very interesting working session where the GIS team from Pierce County, WA discussed their adoption of enterprise GIS and ArcGIS Online. I felt like I was sitting through a presentation I had written about my own team’s struggles and experiences. Like us, Pierce County faced a lot of push-back and foot dragging from their IT department on implementing IT-dependent GIS initiatives, and productivity among the county’s field maintenance crews suffered. Here’s my point – for every GIS/IT success story I’ve heard or read about I’ve heard an equal number of stories where thick-headed IT departments get in the way of a successful GIS initiative. If you are IT and don’t fully support the GIS initiatives in your organization then watch out. You will wake up one day soon to find you’ve been replaced by a cloud based service. It’s happened in my organization and it’s happening across the industry.
  • How come I never heard of the Association of American Geographers? I’m not joking. I’ve been in this industry for over 30 years and have been attending trade shows for all of that time. I’ve heard of the ASPRS, the American Society of Photogrammetry and others, but never the Association of American Geographers. Seems like a good organization. May have to join!
  • Like a good 5¢ cigar, the world also needs more quality geospatial sciences masters program options. I talked to a number of the universities set up at the conference and while they all seemed to be offering quality programs, too many of them are targeted at the professional student, someone who heads into a masters program directly from a bachelors program. For example, here in Atlanta the Georgia State University offers what looks like a cracking good geosciences masters program with a focus on geospatial science, but it’s structured so that all of the coursework is classroom focused and only offered during working hours. For someone making a living in the real world this type of program really isn’t feasible. We need more fully on-line options and more local colleges and universities to offer evening and weekend programs.
  • Let’s get back on the ArcGIS Online horse and discuss a very interesting service that the developers tell me is under serious consideration. One of the gripes that users of Collector for ArcGIS have is the lousy positions that are provided by the GPS/GNSS receivers on handheld units. Keep in mind that this is not a Collector issue, but a hardware issue. One of the improvements ESRI is looking at is a subscription based correction service for use with Collector. It will probably work like this – collect a point or a series of verticies and when they are synced with the ArcGIS Online server the points first pass through a correction service before being passed on to ArcGIS Online. This will likely be a single base station correction solution, but it could offer sub-meter accuracy if using a data collector with a more advanced GPS/GNSS receiver (sorry, this will not work with your iPhone or Android smartphone because of the low quality receivers they use). Sort of like on-the-fly post processing. A very interesting concept, and it could move a lot of hardware manufacturers like Trimble, Topcon and Leica to put out low(er) cost Android-based field data collectors with improved receivers

Before I go, some kudos:

  • To the City of San Diego. I can’t think of a better place to hold this conference
  • To GIS, Inc for a wonderful dinner cruise with NO sales pressure (Mrs. OldTopographer just loved it!)
  • To Andrew Stauffer from ESRI and fellow BGSU grad. Andrew provided invaluable support to our organization over the past few years while we worked through our ArcGIS Online implementation issues. I finally got to meet him in person and thank him
  • To Pat Wallis from ESRI who proved you can hold down a serious job and still be a 1990’s era ‘dude’
  • To Courtney Claessens and Lauri Dafner from ESRI who entertained all of my dumb questions about Open Data
  • To Kurt Schowppe from ESRI. I’m sure my pool party invite got lost in the mail <grin>
  • To Adam Carnow, for putting up with all of my other dumb questions and requests
  • To all the great people I bumped into at random and had wonderful conversations with

And finally, it was good to see my alma mater making a showing at the Map Gallery exhibition. Go Falcons!

BGSU poster

– Brian



Off To San Diego!

It’s off to San Diego for the annual gathering of the faithful, also known as the 2014 ESRI International User Conference.


Looking forward to hear what Uncle Jack has in store for us and picking up mountains of geo-swag from all the exhibitors (I’m bringing along an extra large suitcase just to hold all the cool stuff).

And maybe, just maybe, I’ll be able to find a Trimble rep who is willing to give me a straight answer on why, almost a year on, Trimble still hasn’t released a certified version of Android for their very expensive and potentially very capable, yet unnecessarily crippled, Juno 5 data collectors.

So we’ll see you back here in a week with a report on all the neat stuff I discovered!

– Brian


A Wonderful Way To Waste A Day

Yesterday on Facebook an old friend, Kurt Schwoppe, provided a link to a new US Geological Survey – ESRI joint project, the USGS Historical Topographic Map Explorer. At first I thought, “Meh, I think I’ve seen this before” and was about to move on, but something told me to click the link.

When I came up for air about a half hour later I was entranced. The USGS and ESRI have done a marvelous job of integrating historical map coverage with modern web map technology. The USGS has digitized and georeferenced their entire collection of historical toographic maps covering the entire country (about 178,000 individual maps). The coverage in many areas goes back to the late 1800’s, and users can easily select maps by date and scale, overlay them, adjust visibility to ‘blend’ the views and even download the historical maps directly from the interface.

USGS Historical Map Viewer

By default the website opens focused on New Orleans, as good a place as any to begin exploring the historical maps of a city. Clicking the map links in the timeline in the bottom window will add them to the ‘stack’ on the left side of the web page. From there you can adjust the visibility of each map using a convenient slider to blend the map image in and out, allowing fast and easy comparison with any of the other maps in the stack.

A few initial observations –

First, while there was a steady increase in both the density of content and the variety of information contained in maps as the USGS progressed through the 20th century, there was, sadly, a steady erosion in the practice of cartography as an artistic medium. I understand the USGS’s job isn’t to make art, but visual appeal is something that draws the user to the map. The hand drawn cartography applied to the USGS maps of the late 19th and early 20th century is a wonder to behold. By comparison the current US Topo series maps have all the visual appeal of a rusted out Yugo.

Next, there’s a clear improvement in the spatial accuracy and information content between maps prepared in the late 19th and early 20th centuries and maps prepared in the 1930’s and later. This is due to the adoption of aerial photography and stereo compilation production methods starting in the 1930s. By using stereo aerial photography as a map compilation base the USGS dramatically speeded up map production while simultaneously improving map accuracy and content.

To sum it all up I’ll just say that the USGS Historical Topographic Map Explorer website is the best use of my tax dollars that I’ve seen in a long, long time!

– Brian


ArcGIS Online (Finally!) Gets Labeling

Time for some polite applause.

Yesterday ESRI released an update to ArcGIS Online. This is a significant update because it adds a number of enhancements that the user community has been requesting for quite some time.

The first enhancement we’ll talk about is labeling. Labeling of hosted feature services has to be the #1 update requested by (paying) customers since ArcGIS Online launched in 2012. A hosted feature service is a type of map service that is stored (or hosted) in ESRI’s ArcGIS Online cloud. Before yesterday the only way to get labels into your ArcGIS Online web maps was to stage your data as a dynamic map service on your own internal servers running ArcGIS for Server or create a cached map (tiled) map service. Both of these options are expensive in cost and overhead. With yesterday’s update you can generate labeling against hosted feature services from within the web map interface.

Digital Fayette County 1

The labeling options are fairly limited. The user gets to choose label placement (above, below or on the line.), which geodatabase field(s) will drive the label name and some basic text formatting options. The line/polyline labeling works well, but there appears to be some major issues with polyogn labels not displaying, even in areas where there are no competing labeling issues.

Digital Fayette County 2

Another critical update is a new search function. ESRI has offered filtering against map layers for some time, and that’s a type of search, but that functionality is intended mainly to generate new focused map layers. For this new search functionality ESRI decided to embed the feature in the web map interface rather than access it from a specific map layer. At first I was a bit confused as to what ESRI was trying to achieve with this new feature – I expected any new search function to be driven from the map interface. However, once I played with it I see ESRI’s logic, and I like how they implemented it.

The search criteria is first set up on the web map’s Properties page.

Digital Fayette County 3

Once the search criteria are set up on the Properties page the user can access the functionality from the web map’s search window.

Digital Fayette County 4

The Search function will zoom to the selected feature and activate associated pop-ups.

Digital Fayette County 5While this is a very simple search functionality it works well and I like how it was implemented.

There are a host of other key updates. I won’t go into detail on them, but new features that have caught my eye include:

  • The ability to display related data in web map pop-ups
  • An update to the Basic Viewer map template that supports searches. The Basic Viewer is one we use heavily in our organization and I’m glad to see this one get a key update
  • The new GeoForm template that allows users to add data to a web map via a web form instead of though a pop-up
  • When exporting data from a web map in file geodatabase format all attachments (pictures, documents, etc.) get exported along with the data

This is just a first and fast look at the new features. There’s a lot of good stuff in here and it’ll take me some time to play with it all. In a few weeks I’ll be out at the annual ESRI International User Conference and I’m sure these new features will get a lot of coverage during the Plenary sessions. Something to look forward to!

– Brian


The Software I Hate To Love

In the Geospatial Engineering world there is one Big Dog software developer and a pack of miniature chihuahuas snapping at its heels.  The Big Dog is ESRI, developers of the ArcGIS suite of software products.

ESRI dominates the GIS (geospatial information systems) software field in the same way Microsoft dominates the computer operating system field – there are competitors but nobody even comes close to the market share that ESRI developed and has held for decades.

But unlike Microsoft, ESRI didn’t get to where it is by being predatory and imposing crushing licensing agreements on its clients.  ESRI got it’s market share the old fashioned way – by simply being the best product in the market for the target consumer group.  ArcGIS is the software product that moved the traditional discipline of topography out of the paper map and overlay era and into the computer-based, analysis driven discipline of Geospatial Engineering.

ESRI was started by Jack Dangermond, someone I refer to as a “Birkenstock wearin’, Volvo drivin’, granola crunchin’ hippie.”  In the late 1960s and early 70s, building on pioneer work that had been done on early GIS concepts and development in Canada (where the discipline of GIS got its start), Dangermond created a land cover analysis program called ArcInfo and released it as a commercial product in the early 1980s.

Early versions of ArcInfo were hindered by limited computer processing, storage and graphics capability.  Geospatial analysis is very much a visual discipline – you’re making maps, after all.  Early desktop hardware simply didn’t have the capability and capacity to bring the full visual mapping experience to the user.  Up through the mid 1990s only expensive Unix workstations could handle that level of processing.  This all changed around 1995 when desktop computing power started increasing exponentially with each new processor design while at the same time hardware prices dropped like a brick.  Almost overnight inexpensive desktop computers appeared that could easily handle the processing and graphics demands a software package like ArcInfo placed on them.  I was working as a GIS program manager for the US Army when this hardware revolution hit the field and watched as in less than two years inexpensive desktop PCs caught up with and then quickly surpassed the processing power of the Unix-based Sun, Silicon Graphics and HP  systems we had been relying on.  What also helped was Microsoft’s release of WindowsNT at about the same time.  Finally we had a serious network-ready enterprise operating system running on high capacity hardware that didn’t make our budget guys weep every time we said we needed to do an upgrade.

ArcInfo is the flagship product of the ESRI line and is extremely powerful software.  But in the 1980s ESRI realized that not everyone needed the processing power of ArcInfo (nor could they afford the nausea-inducing cost of an ArcInfo software license).  ESRI introduced a lightweight version of ArcInfo that included most of the visualization capability of the high end package but left out the heavyweight analysis and data development functionality.  They named it ArcView.  It was priced right – something small organizations and even individuals serious about GIS could afford (if I remember correctly the GSA schedule price for a single ArcView license ran around $600 in 2000).  The vast majority of today’s GIS professionals cut their teeth on ArcView.

But ESRI’s real contribution to the GIS profession is the development of data types that both support complex spatial analysis and can be shared across different software platforms.  It is Dangermond’s vision that GIS-based mapping and analysis solutions should not be a stovepipe, but a shared resource.  This drove ESRI to develop the concept of the geodatabase.  A geodatabase is a collection of data in a standard relational database management system (RDBMS) like Oracle or SQL Server, but the data has very unique spatial values (location in x, y and z coordinates) assigned to it.  This means that GIS software can leverage the spatial values to relate the data in a location context and other RDBMS-based software systems can easily share their information with the geodatabase.   The geodatabase only needs to store GIS-unique features and can pull and do analysis against associated data in another database.

ESRI also developed a version of the geodatabase that does not require a high powered relational database management system as it’s foundation.  About a decade ago ESRI introduced the concept of a file-based geodatabase designed for use by small organizations or groups.  The file geodatabase is a simple to create yet powerful and extremely flexible data format that brings most of the power of the relational database and complex data analysis to the desktop machine and the individual user.

But what does the future hold?  ESRI realized long ago that the Internet was the map content delivery vehicle of the future.  Paper maps were headed to obsolescence and what Jack Dangermond describes as the ‘rich web map’ would quickly become the geospatial data visualization and analysis tool of the future.  He’s right, but only very recently has web technology started to catch up with his vision.

For the better part of a decade it was possible to hire professional web developers to create some very nice web mapping applications built on ESRIs early web technology called ArcIMS.  The problem was that those applications were difficult to develop, difficult to maintain, and required a lot of heavy weight back-end web and database server technology.  Only large enterprises and governments could support the hardware, software, development and maintenance costs.  ESRI’s web solutions were very much limited by the immature web development technologies available at the time.  It is ESRI’s vision that even the average geospatial professional working for a small business or local government should be able to develop, launch and maintain high quality web maps that bring value to the organization they support.  ESRI started laying the groundwork for this vision back with their ArcGIS 9 series of software releases and the development of things like ArcGIS Server and the concept of Map Services.  Two years ago they released ArcGIS 10 that brought a lot of maturity to the concept of integrated and streamlined web mapping using the Microsoft Silverlight and Adobe Flex web development environments, and the launch of ArcGIS Online with its peek into the future concept of ‘cloud services’ for hosting GIS data, services and web maps.

At it’s recent worldwide user’s conference ESRI announced the pending release of ArcGIS 10.1 with better integrated and streamlined web development tools.  But ESRI also announced two new developments that are generating a lot of interest.  The first is the announcement that ESRI has partnered with to host robust, enterprise-level cloud services for GIS web mapping, data hosting and application development.  The idea is that an enterprise purchases an ArcGIS Server software license, passes that license over to Amazon and Amazon stands up and maintains the necessary database and web development environment for the enterprise.  This is a huge development because it can free the GIS group supporting the enterprise from the often onerous and restrictive shackles placed on it by their local IT department.

The other announcement was the pending release of the ArcGIS Online Organizational Account program.  The Organizational Account program appears to be targeted as smaller enterprises and groups that don’t have the money or need to purchase full-up cloud services like those offered by Amazon.  Under the Organizational Account concept an organization will be able to purchase data and web hosting services from ESRI on a subscription basis.  It is still a ‘cloud’ model, but on a smaller, more tailorable scale that should allow small organizations to enjoy most of the capabilities of a full-up ArcGIS Server implementation.

The last good thing I need to discuss is another little-known program released this year – the concept of ArcGIS for home or personal use.  ESRI’s software licensing fees have escalated to the point that the geospatial professional simply can’t afford a copy to use to keep his or her skills sharp.  I noted above that the GSA price for an ArcView license used to run about $600 – a bearable cost if you were serious about GIS.  However, the cost for an ArcView license now hovers around $1,600, far too much for even the serious home user.  This year ESRI announced the ArcGIS for Home Use program.  Anyone can purchase a 1-year license of ArcView for $100, a very reasonable price.  Not only does this $100 include on-line software training and support, but you also get a very extensive suite of add-on modules like 3D Analyst, Spatial Analyst and Geostatistical Analyst.  The total value of the software you get for your $100 subscription comes to over $10,000.  One hell of a deal.  Of course there are restrictions attached to this deal.  The intent of the home use program is just that – you can only use it at home.  You can also only use it for personal development/training purposes or non-profit use.  Still, like I said, it’s one hell of a deal.


Now, it’s not all rainbows and unicorns when it comes to ArcGIS and ESRI’s position in the GIS world.  All this GIS goodness is of little use unless it’s leveraged in an environment with clearly defined professional standards.  Nor can you allow a professional discipline to be defined by a software application or be inexorably joined to a piece of software.  This is where ESRI’s has failed the geospatial community, and they have failed in ways they can’t even visualize from where they sit.

Here’s the reality: geospatial engineering is the discipline, the term geospatial information systems – GIS – merely describes the tools geospatial professionals use to do their job.  Where ESRI has failed is in using its industry position and influence to help clearly delineate the difference between the two.  As a result, far too many engineering professionals view geospatial professionals as little more than button pushing software monkeys, one step up from data entry clerks.

Part of the culture Jack Dangermond has fostered and progressed through ESRI is the idea that GIS is for everyone and nobody owns it.  What he is effectively saying is that GIS is the discipline; the tools and the software drive the field, not the other way around.

While community ownership is a noble goal, ESRI’s dominance of the field gives lie to that very philosophy.  Effectively, ESRI ‘owns’ GIS; it is by far the world’s largest GIS software developer.  It has either developed or successfully implemented most of the recognized spatial analysis processes in use today.  It’s data management features have driven the development of most of the spatial data standards in use today.  The vast majority of geospatial professionals worldwide learned their trade using ArcGIS.

What is lacking, however, is a clear and recognized definition of just what a geospatial professional is.  Dangermond is correct when he claims it’s not his role to define what a geospatial professional should be – that is the job of the geospatial field and industry as a whole.  But Dangermond has been the biggest catalyst in the geospatial world for the last 30 years.  He and the resources he commands through ESRI have been in the best position to cajole and coerce the private sector, academia and the government to establish the roles, practices and responsibilities that define Geospatial Engineering as a formal discipline.  He should have been the single biggest champion of the concept of Geospatial Engineering as a professional discipline.  Instead he’s been pretty much silent on the whole issue.

It is only in the last few years that the US Department of Labor developed a formal competency model for GIS (GIS, not Geospatial Engineering), and the GIS Professional Certification program is just starting to get its feet on the ground (after a disastrous grandfathering period that allowed perhaps hundreds of clearly unqualified individuals to get a GISP certificate and do damage to the reputation of the geospatial profession that may take years to overcome).  Great, but all this should have happened 20 years ago.

What this means is that Geospatial Engineering is not respected as a professional discipline.  I can tell you from long personal experience that geospatial professionals are looked down upon by other disciplines such as civil engineering and surveying, in large part because there are no testable and enforced standards that define us as a ‘profession’.  Guess what – they are right!


Many readers are probably asking themselves “Huh?  What’s he getting at here?”  I guess I’d ask the same question myself if I didn’t understand the background issues.

I’ve been a topographer and geospatial engineer for over 30 years.  A few months back I laid out my initial arguments in a post titled In Praise of the Old Topographer.  In that post I made the argument that Geospatial Engineering is just a logical continuation of the older and much respected profession of Topographer.  I also outlined my argument that geospatial information systems, including ArcGIS, are merely the tools that the Geospatial Engineer uses to do his or her job.

With this post my goal was to identify one of the main culprits that is keeping Geospatial Engineering from fully maturing into a recognized profession, a profession with it’s own standards, roles and responsibilities.

ArcGIS is that culprit.  On the one hand we have extraordinarily capable software that is almost single handedly responsible for bringing the discipline into the computer age and is poised to bring it fully into the age of  world wide web.  On the other hand, ArcGIS and it’s parent company ESRI are almost single handedly responsible for holding the discipline back and keeping it from taking it’s rightful place as a profession on par with other engineering disciplines.

For these reasons ArcGIS is the software I hate to love.